
February 30, 2024

SECURITY AUDIT
REPORT FOR

ATTENTION: This report contains sensitive, privileged, and confidential information. Precautions should be taken to
protect the confidentiality of the information in this document. Publication of this report may cause reputational
damage to XYZ Consulting LLC or facilitate attacks against XYZ Consulting LLC. Unauthorized distribution or
disclosure of this report, in whole or in part, is strictly prohibited.

XYZ Consulting



John J. john@example.com

George L. george@example.com

Samyak Jain samyak@nexuscrypt.com

Ajay Jain ajay@nexuscrypt.com

CONTACT INFORMATION

XYZ Consulting

NexusCrypt

TEST TYPE: WAPT (Web Application Penetration Testing)

STARTED ON: 30 February, 2024

COMPLETED ON: 31 February, 2024

DURATION: 30 Days

DOCUMENT DETAILS

Title Details

Confidential



Confidential 2

Table of Contents

1. Executive Summary

1.1 Scope of Testing

1.2 Graphical Summary

1.3 List of Vulnerabilities

2. Discovered Vulnerabilities Details

3. List of Tests Performed

3.1 OWASP Top 10

3.2 SANS 25 Software Errors/Tests

3.3 Other Test Cases

3.4 Server-Level Test Cases

3.2 SANS 25 Software Errors/Tests

3.3 Other Test Cases



Access Control
60%

Others
20%

Business Logic
10%

Security Misconfigurations
10%

1.1 Scope of Testing
Security assessment includes testing for security loopholes in the scope defined
below. Apart from the following, no other information was provided. Nothing was
assumed at the start of the security assessment.

The following was the scope covered under the security audit:

Application 1: auth.example.com

Application 2: api.example.com

1.2 Graphical Summary

Confidential 3

1. Executive Summary

This document contains the initial security assessment report for :

XYZ Consulting Dasbboard

The purpose of this assessment was to point out security loopholes, business
logic errors, and missing best security practices. The tests were carried out
assuming the identity of an attacker or a malicious user but no harm was made to
the functionality or working of the application/network.

The below graphical representations will provide you an overall summary of the
security audit scan results, including, vulnerabilities discovered, severity,
respective CVSS Score, and other vulnerability details such as its impact, detailed
PoC, steps to reproduce, affected URLs/network parameters, and recommended
fixes.

High
50%

Medium
20%

Critical
10%

Low
10%

Recommendations
10%



Confidential 4

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 2 2 2 1

FINDING SEVERITY

SQL Injection x 3 CRITICAL

IDORs HIGH

Stored XSS HIGH

Reflected XSS MEDIUM

Information Disclosure MEDIUM

Server-Side Request Forgery (SSRF) LOW

Cross-Site Request Forgery (CSRF) LOW

Lack of Current Password INFORMATIONAL

1.3 List of Vulnerabilities



Confidential 5

2. Discovered Vulnerabilities Details

Vulnerability #1

SQL Injection

Severity:

Critical
Status:

Unresolved

Affected URLs:

Details of Vulnerability:

Steps to reproduce:

https://example.com/?test={payload}

https://example.com/about

SQL injection vulnerabilities arise when user-controllable data is incorporated
into database SQL queries in an unsafe manner. An attacker can supply crafted
input to break out of the data context in which their input appears and interfere
with the structure of the surrounding query.

1. Go to: https://example.com/?test={payload}

2. Proxy your data throw burp suite and turn interception on.

3. After forwarding few requests, you will get a request with the following
endpoint, send it to repeater: contactus/?test=

4. In the “?test=” parameter, add the following SQL Payload: 'SELECT *’

https://example.com/contact

5. The payload contains a sleep action, which will make the database sleep for
around 20 milliseconds, send the request.

6. After sending the request, in the right hand down side, notice that the
request took 20 milliseconds to complete, confirming our payload has been
successfully executed which confirms the SQL Injection vulnerability.

https://example.com/
https://example.com/
https://example.com/?test=%7Bpayload%7D
https://example.com/


Confidential 6

Note:
Please find the requests for all three vulnerable endpoints and video pocs in
resources folder.

Suggested Fix:

The most effective way to prevent SQL injection attacks is to use parameterized
queries (also known as prepared statements) for all database access. This
method uses two steps to incorporate potentially tainted data into SQL queries:
first, the application specifies the structure of the query, leaving placeholders
for each item of user input; second, the application specifies the contents of
each placeholder. Because the structure of the query has already been defined
in the first step, it is not possible for malformed data in the second step to
interfere with the query structure. You should review the documentation for your
database and application platform to determine the appropriate APIs which you
can use to perform parameterized queries.

Additional References:

https://example.com/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

https://www.example.com/websitesecurity/sql-injection/

https://example.com/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www.example.com/websitesecurity/sql-injection/


Confidential 7



Confidential 8

3. List of VAPT Tests Performed

The following lists of tests are suggestive & not limited to the ones listed. Most
importantly, every test case has multiple sub-test cases ranging from a few to
sometimes 1000+ sub tests.

Additional test cases will be performed based on factors such as:

Technology Stack 1.
Server Side Programming Language, Front-end frameworks2.
 Framework/CMS/APIs 3.
Type of application (Payment integrations, external integrations) 4.

3.1 OWASP Top 10



Confidential 9

3.2 SANS 25 Software Errors/Tests



Confidential 10

3.3 174 Other Test Cases



THE END

Questions? Contact us at
contact@nexuscrypt.com


