February 30,2024

SECURITY AUDIT
REPORT FOR

NEXUSCRYPT

ATTENTION: This report contains sensitive, privileged, and confidential information. Precautions should be taken to
protect the confidentiality of the information in this document. Publication of this report may cause reputational
damage to XYZ Consulting LLC or facilitate attacks against XYZ Consulting LLC. Unauthorized distribution or
disclosure of this report, in whole or in part, is strictly prohibited.

DOCUMENT DETAILS

TEST TYPE: WAPT (Web Application Penetration Testing)
STARTED ON: 30 February, 2024

COMPLETED ON: 31 February, 2024

DURATION: 30 Days

CONTACT INFORMATION

XYZ Consulting

John J. john@example.com

George L. george@example.com

NexusCrypt
Samyak Jain samyak@nexuscrypt.com
Ajay Jain ajay@nexuscrypt.com

Confidential

Table of Contents

1. Executive Summary

1.1 Scope of Testing
1.2 Graphical Summary
1.3 List of Vulnerabilities

2. Discovered Vulnerabilities Details

3. List of Tests Performed

3.1 OWASP Top 10

3.2 SANS 25 Software Errors/Tests
3.3 Other Test Cases

3.4 Server-Level Test Cases

3.2 SANS 25 Software Errors/Tests
3.3 Other Test Cases

Confidential 2

Executive Summary

This document contains the initial security assessment report for :

XYZ Consulting Dasbboard

The purpose of this assessment was to point out security loopholes, business
logic errors, and missing best security practices. The tests were carried out
assuming the identity of an attacker or a malicious user but no harm was made to
the functionality or working of the application/network.

1.1 Scope of Testing

Security assessment includes testing for security loopholes in the scope defined
below. Apart from the following, no other information was provided. Nothing was
assumed at the start of the security assessment.

The following was the scope covered under the security audit:

Application 1: auth.example.com
Application 2: api.example.com

1.2 Graphical Summary

The below graphical representations will provide you an overall summary of the
security audit scan results, including, vulnerabilities discovered, severity,
respective CVSS Score, and other vulnerability details such as its impact, detailed
PoC, steps to reproduce, affected URLs/network parameters, and recommended
fixes.

ine
10%

Security Misconfigurations
10%

60%

Confidential 3

1.3 List of Vulnerabilities

LOW INFORMATIONAL

FINDING SEVERITY

SQL Injection x 3 CRITICAL

IDORs HIGH

Stored XSS HIGH

Reflected XSS

Information Disclosure

Server-Side Request Forgery (SSRF)

Cross-Site Request Forgery (CSRF) LOW

Lack of Current Password INFORMATIONAL

Confidential 4

Discovered Vulnerabilities Details

Vulnerability #1

SQL Injection

Severity: Status:

Critical Unresolved

Affected URLs:
https://example.com/?test={payload}

https://example.com/about

https://example.com/contact

Details of Vulnerability:

SQL injection vulnerabilities arise when user-controllable data is incorporated
into database SQL queries in an unsafe manner. An attacker can supply crafted
input to break out of the data context in which their input appears and interfere
with the structure of the surrounding query.

Steps to reproduce:

1. Go to: https://example.com/?test={payload}

2. Proxy your data throw burp suite and turn interception on.

3. After forwarding few requests, you will get a request with the following
endpoint, send it to repeater: contactus/?test=

4. In the “?test=" parameter, add the following SQL Payload: 'SELECT *’
5. The payload contains a sleep action, which will make the database sleep for
around 20 milliseconds, send the request.

6. After sending the request, in the right hand down side, notice that the
request took 20 milliseconds to complete, confirming our payload has been
successfully executed which confirms the SQL Injection vulnerability.

Confidential 5

https://example.com/
https://example.com/
https://example.com/?test=%7Bpayload%7D
https://example.com/

Example Domain

This domain is for use in ilustrative examples in documents. You may use this

\A

Note:

Please find the requests for all three vulnerable endpoints and video pocs in
resources folder.

Suggested Fix:

The most effective way to prevent SQL injection attacks is to use parameterized
queries (also known as prepared statements) for all database access. This
method uses two steps to incorporate potentially tainted data into SQL queries:
first, the application specifies the structure of the query, leaving placeholders
for each item of user input; second, the application specifies the contents of
each placeholder. Because the structure of the query has already been defined
in the first step, it is not possible for malformed data in the second step to
interfere with the query structure. You should review the documentation for your
database and application platform to determine the appropriate APls which you
can use to perform parameterized queries.

Additional References:

» https://example.com/cheatsheets/SQL_Injection_Prevention_Cheat Sheet.html

» https://www.example.com/websitesecurity/sqgl-injection/

Confidential 6

https://example.com/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://www.example.com/websitesecurity/sql-injection/

Confidential 7

List of VAPT Tests Performed

The following lists of tests are suggestive & not limited to the ones listed. Most
importantly, every test case has multiple sub-test cases ranging from a few to
sometimes 1000+ sub tests.

Additional test cases will be performed based on factors such as:

1. Technology Stack

2.Server Side Programming Language, Front-end frameworks

3. Framework/CMS/APIs

4. Type of application (Payment integrations, external integrations)

3.1OWASP Top 10

OWASP Top 10

for Web Applications

SQL Injection

Broken Authentication
Sensitive Data Exposure
XML External Entities (XXL)
Broken Access Control
Security Misconfiguration
Cross-Site Scripting (XSS)
Insecure Deserialization

OO~ s n bW =

Using Components with Known Vulnerabilities

=]

Insufficient Logging and Monitoring

for Mobile Applications

Improper Platform Usage
Insecure Data Storage
Insecure Communication
Insecure Authentication
Insufficient Cryptography
Insecure Autheorization
Client Mode Quality
Code Tampering

LT - T - R T - P

Reverse Engineering

=

Extraneous Functionality

Confidential 8

3.2 SANS 25 Software Errors/Tests

b

Improper Restriction of Operations within the Bounds of o Memory Buffer
Improper Neutralization of Input During Web Page Generation ("X55)
Improper Input Validation

Information Exposure

Qut-of-bounds Read

Improper Neutralization of Speciol Elements used in an SQL Command (SQLi)
Use After Free

Integer Overflow or Wraparound

Cross-Site Request Forgery (CSRF)

0 @ S o W o W W

=

Improper Limitation of a Pathname to a Restricted Directory ['Path Troversal')
n Improper Neutralization of Speciol Elements used in an ©S Command
12 Out-of-bounds Write

13 Improper Authentication

14 NULL Pointer Dereference

15 Incorrect Permission Assignment for Critical Resource

16 Unrestricted Upload of File with Dangerous Type

17 Improper Restriction of XML External Entity Reference

18 Improper Control of Generation of Code ['Code Injection’)

19 Use of Hard-coded Credentials

20 Uncontrolled Resource Consumption

21 Missing Release of Resource after Effective Lifetime

22 Untrusted Search Path

23 Deserialization of Untrusted Data

24 Improper Privilege Management

25 Improper Certificate Validation

Confidential 9

3.3 174 Other Test Cases

Other Tests Typical Severity

] OS5 Command Injection High
2 SQOL Injection (Second Order) High
5 XML External Entity Injection High
4 LCAP Injection High
5 KXPath Injection High
& XML Injection High
7 ASP.NET Debugging Enabled High
g DaS Locking Customer Accounts Medium
2 Do% Buffer Overflows Medium
10 Storing too much data in session (DoS) High
n Writing user-provided data te disk [DaS) High
12 HTTP Insecure methads available on Server High
15 Out of band resource load (HTTF) High
14 File path manipulation High
15 Server-site JlavaScript code injection High
] Perl code injection High
17 Ruby code injectian High
18 Python code injection High
4 Expression Language injection High
20 Unidentified code injection High
21 Server-side template injection High
22 S5L injection High
25 Stored XSS High
24 HTTP response header Injection High
25 Reflected XSS High
256 Client-side template injection High
27 DOM-based X55 High
28 Retlected DOM-basad XS5 High
29 Stored DOM-based XS5 High
30 DOM-based JavaScript Injection High
31 Retlected DOM-based JavaSeript Injection High
32 Stored DOM-based kavaScript Injection High
35 Path-relative style sheet impaort Information
24 Client-side S0Li ([DOM-bosed) High
35 Cliant-side SOLi (Reflacted DOM-based) High
L1 Client-side SOLi [Stored DOM-based) High

Confidential 10

THE END

contact@nexuscrypt.com

